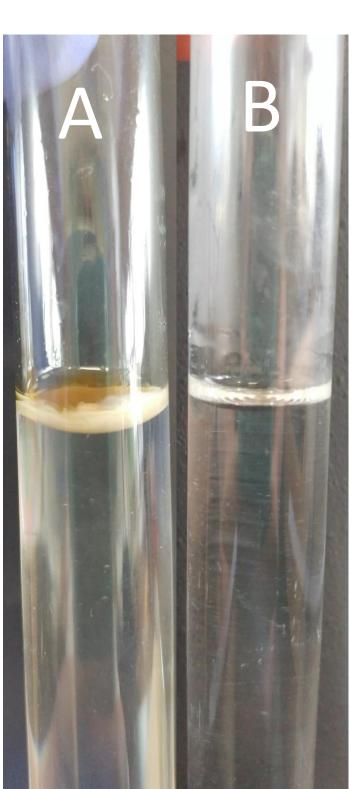
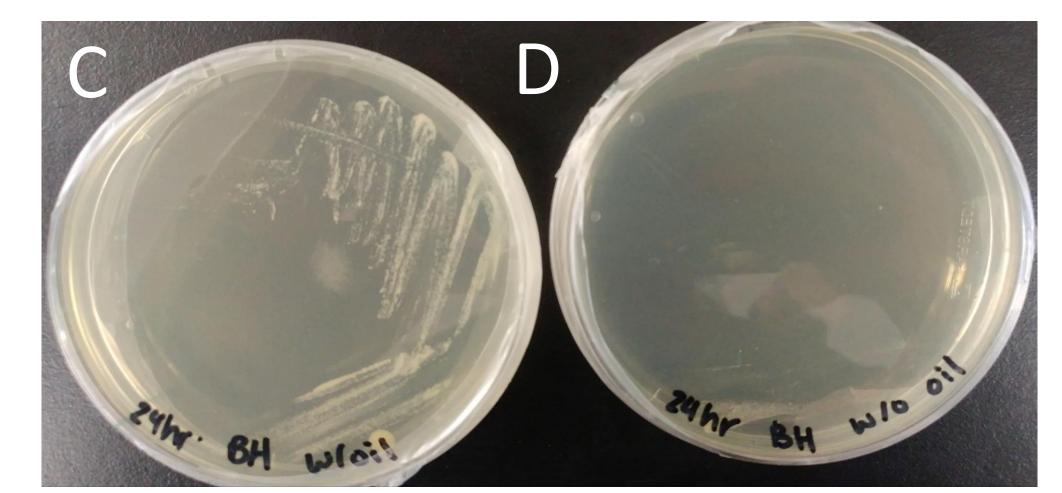


Cloning Protocol and Sequence Analysis of the alkB Gene in Gordonia otitidis

Tessa H. Webb and Stephen Thomas
Department of Biology, University of the Fraser Valley


Overview


A bacteria, *Gordonia otitidis*, was previously isolated from soil at the University of the Fraser Valley Abbotsford campus based on its ability to metabolize used motor oil. The current study is involved in the characterization of a gene thought to be involved in hydrocarbon metabolism, and therefore, essential for the bioremediation of motor oil. Very little is known about *Gordonia otitidis* with respect to its ability to metabolize oil; therefore, the study of this bacteria may provide a unique metabolic pathway not previously characterized. Characterization of this pathway requires cloning and sequencing of genes associated with hydrocarbon metabolism. *alk*B (an alkane monooxygenase), has been selected as a candidate for further study. Part of the gene has been cloned and sequenced, and we now wish to clone the remainder of the gene along with its regulatory region, which will allow us to study expression levels under conditions that stimulate increased transcription.

We have developed a Southern blot procedure (see above) to identify restriction enzymes that can be used in the cloning of the gene into *Escherichia coli*. Following the generation of a gene library, transformants will be screened for the presence of the *alk*B gene using a PCR generated probe from the previously cloned section of this gene. A secondary cloning procedure involving PCR amplification of the 5' region of *alkB* with the upstream region has also been developed. Cloning this fragment will allow future analysis of the promoter region of *alkB* and determination of transcriptional regulation mechanisms.

Cell Cultures

Figure 1 *Gordonia otitidis* cultures **A)** BH minimal salt broth with 100 μL sterile used motor oil **B)** BH minimal salts media without motor oil **C)** TSA streaked with 24 hour culture *G. otitidis* in BH media with 100μL sterile used motor oil. **D)** TSA streaked with 24 hour culture *G. otitidis* in BH media without motor oil as carbon source

PCR Gene Fragment Analysis of alkB

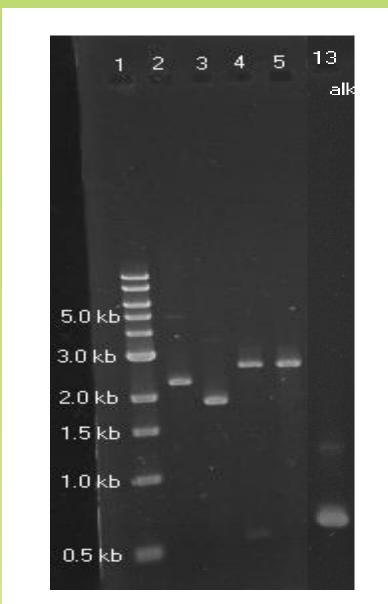
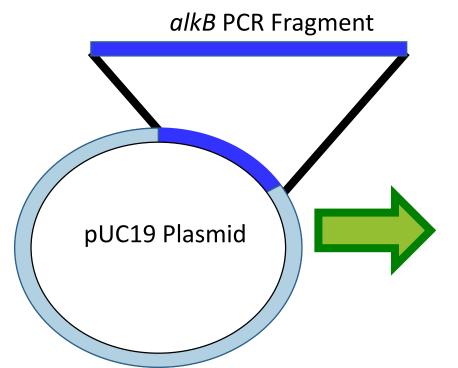


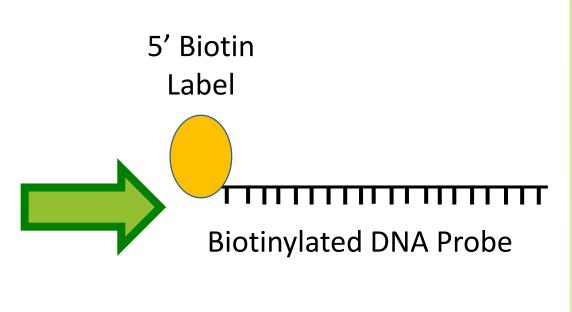
Figure 2 alkB PCR clone Miniprep isolation

Lane 1: 1kb Ladder

Lane 2: alkB PCR fragment in pUC19


Lane 3: pUC 19

Lane 4: alkB PCR clone Sall digestion


Lane 5: pUC19 Sall digestion

Lane 13: alkB PCR Product

alkB fragment sequenced by alphaDNA inc. and analyzed using NCBI BLAST to create DNA probe to be used for Southern blot and colony screening procedure.

5'CAAAGAAAGCCCTAGCGCTGGT
TGTCGAAATCGCACTGGCACAGA
GCTTCTACGGCCACTTCTACATCG
AGCACAATCGCGGACATCACGTG
CGCGTCGCGACCCCGGAAGACCC
TGCCTCGTCGCGACTCGGTGAGA
ACTTCTATCGTTTCTGGTTCCGTAC
GGTCTTCGGATCGTTGCGCAGCG
CATGGCAGGTCGAGGCAAAC...3'

Efficiency Test for Biotinylated Probe

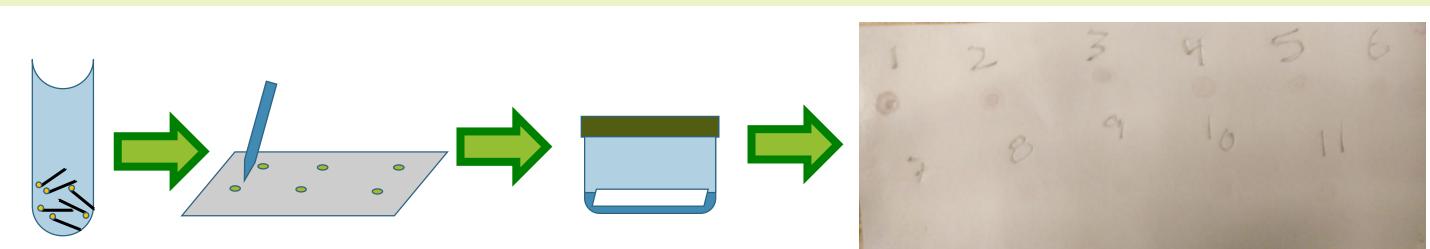
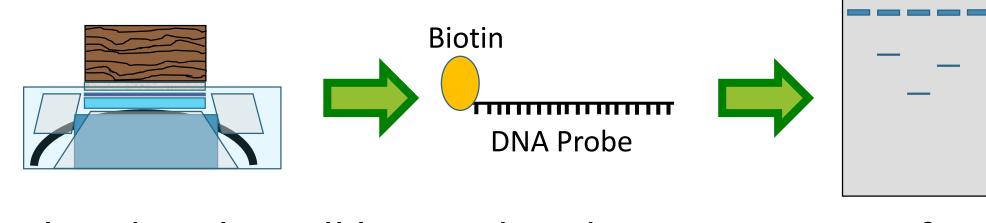
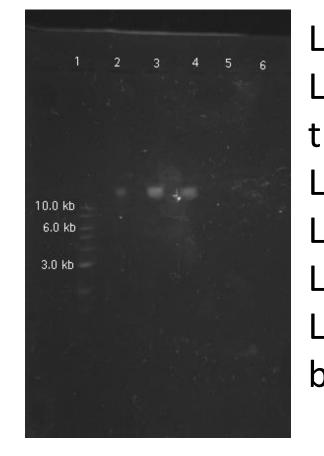
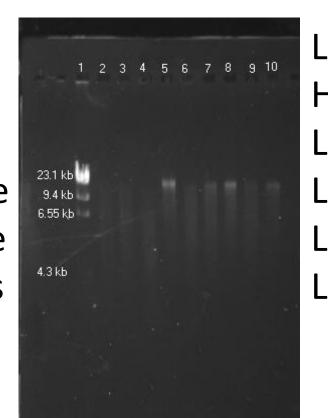



Figure 3 Detection Efficiency


Biotinylated probe detection with streptavidin-alkaline phosphatase conjugate and BCIP substrate. **1.**1.0ng **2.** 0.66ng **3.** 0.5ng **4.** 0.33ng **5.** 0.25ng **6.** 0.2ng **7.** 0.16ng **8.** 0.14ng **9.** 0.12ng **10.** 0.11ng **11.** 0.1ng

The biotinylated probe will be used to detect restriction fragments containing the *alkB* gene in a southern blot. The fragments will be isolated and transformed to create clones containing the entire *alkB* gene for future mechanistic studies of oil metabolism.

DNA Extraction and Digestion


Figure 4 DNA Isolation from G. otitidis

Lane 1: 1kb Ladder
Lane 2: *G. otitidis* test
tube

Lane 3: *E. coli* test tube
Lane 4: *G. otitidis* plate
Lane 5: *E.coli* w/ beads
Lane 6: *G. otitidis* w/
beads

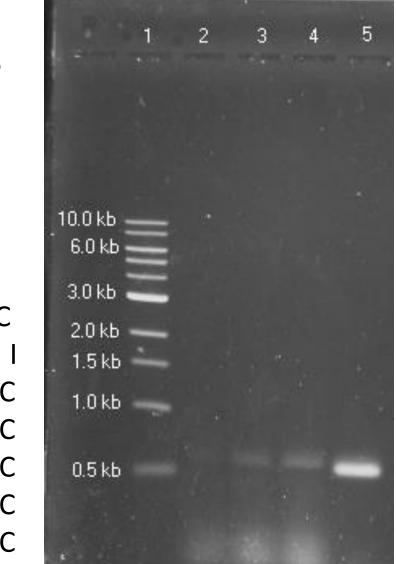
Figure 5 Restriction Digest of Chromosomal G. otitidis DNA

Lane 1: λ Lane 6: Clal HindIII Ladder Lane 7: BamHI Lane 2: EcoRI Lane 8: SacI Lane 3: EcoRV Lane 9: PstI Lane 4: HindIII Lane 10: SalI Lane 5: Xbal

Highest chromosomal DNA extraction yield using *G. otitidis* test tube culture. Xbal, Sacl, and Sall create largest fragments, increasing likelihood of restriction fragment containing entire *alkB* gene.

PCR Amplification of Secondary alkB fragment

Primers designed for amplification of upstream and 5' region of *alkB* gene. Downstream region previously cloned by *Moreton*, *M*.


Figure 6 Primer Alignment Forward primer alignment based on conserved region of carbohydrate diacid transcriptional regulator gene directly upstream of alkB. Designed using protein sequence HPIRERAG

Reverse primer designed using good quality sequence in alkB PCR fragment at alkB locus 493-517 bp.

5' CGGCCACTTCTACATCGAGCACAA 3'
Reverse Complement:
5' TTGTGCTCGATGTAGAAGTGGCCG 3'

PCR Sequence:

Figure 7 PCR Amplification

Lane 1:1kb Ladder
Lane2: 3µL DNA
template PCR
Lane 3: 4µL DNA
template PCR
Lane 4: 5µL DNA
template PCR
Lane 5: Positive
Control (Moreton,
M. alkB PCR
amplification)

Amplification increased efficacy as volume of DNA template increased. Molecular weight of amplicon is approximately 600bp, corresponding with target amplicon of 629bp. Amplified region must be confirmed with cloning and sequencing.

Conclusion

This ultimate goal of this study is to provide the ability to study the regulation of the alkB gene in response to exposure to a toxic substance in the environment, such as oil. As discussed, we have studied two methods in attempts to clone the regulatory region of the alkB gene. We have successfully sequenced the primary alkB PCR fragment and identified it as a 338bp region of the alkB gene located centrally at nucleotide position 488-826. The DNA probe designed from this sequence will be used in future southern blot detection and colony screening of alkB gene clones. We have also been successful in generating the promoter region of alkB using PCR from an upstream region. This product will now be cloned allowing us to proceed to the next step in our studies. Potential use of this gene fragment includes the cloning of the GFP gene under control of the alkB promoter to be used as a reporter gene providing a quantitative measurement of gene expression following exposure to an environmental toxin. Both the full *alkB* and upstream region clones will allow future study of alkB regulation and further comprehension of hydrocarbon metabolism for use in bioremediation.

Acknowledgements

I would like to thank Dr. Stephen Thomas for his discussion and guidance. As well, thank you to Avril Alfred, Jenny Hamilton, Valentina Jovanovic and Fabiola Rojas for their time, technical expertise and help ordering supplies.

References

Yoshida, I., Hosoyama, A., Tsuchikane, K., Katsumata, H., Yamazaki, S., Fujita, N. Gordonia otitidis NBRC 100426 DNA, contig: GOOTI001, whole genome shotgun sequence. BAFB01000001.1.

Moreton, M. (2016). Towards characterizing the presence and regulatory region of alkB within Gordonia otitidis. University of the Fraser Valley.

Shen, F., Young, L., Hsieh, M., Lin, S., Young, C. (2010). Molecular detection and phylogenetic analysis of the alkane 1-monopxygenase gene from Gordonia spp. Systematic and applied