
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

Problem Formulation

Our goal is to determine a change-over schedule where higher

priority machines tend to be closer to the front of the schedule

while ensuring that every machine will have a fair chance to get

serviced. Thus we are trying to optimize priority subject to 𝑇𝑇𝐶
and 𝐶𝑂𝑇 constraints. To test this we will use a metric of weighted

priority over the output list. This weights the priority of machines

closer to the front of the list higher than those at the end.

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =෍

𝑖=1

𝑚

𝑃𝑖 ∙ λ
𝑖

Where 0 < λ < 1 is the weighting parameter.

It is important to ensure that our makespan and idle times are not

severely harmed in the process. The makespan is the total time

for all the machines to run and be serviced. The idle time is the

time a completed machine must wait before being serviced. Our

algorithm is tested against a first-come-first-serve baseline where

machines are sorted by 𝑇𝑇𝐶.

Abstract

We present a solution to a variation of the Job Shop scheduling

problem in which jobs (with each job having assigned priorities)

are to be run by 𝑚 machines and serviced by 𝑛 operators. In a

job shop, different machines run concurrently, which may result in

multiple jobs being completed at the same time. It becomes a

concern whenever jobs with lower priorities are serviced over

jobs with higher priorities. Our goal is to develop a software to

guide operators on jobs to be serviced at any given time. We

have formulated several algorithms based on the knapsack and

leader election problems to realize our goal each with O(𝑚2) run-

time complexity, where 𝑚 is the number of machines. But we

limit our discussion here to the np-hard knapsack problem.

Background
Algorithm

This algorithm was tested in a Python3 Jupyter-Notebook

environment on randomly generated sets of 40 machines.

Machines were generated as 3-tuples – (𝐶𝑂𝑇, 𝑇𝑇𝐶, 𝑃) using

random values.

From the randomly generated list of machines we constructed a

baseline schedule that sorted all machines by 𝑇𝑇𝐶. This gives us

a good way to compare our algorithm to the first-come-first serve

situation which is the basis for the problem. We ran 500 tests per

metric and used a λ = 0.9 for weighted priority.

Results Conclusions

Future Research

Our goal will be to explore other optimization approaches such as

Lagrange Multipliers, and the aforementioned Leader Election

problem approach. Since the algorithm mentioned here is

designed with only one operator and assumes that this will

extend well to many operators, we may look at ways of improving

this algorithm further if the number of operators is known. We will

also look into ways of improving the time-complexity of this

algorithm, and applying other knapsack problem solutions.

Acknowledgements

Thank you to Dr. Adesina for the opportunity to work on this

project, and the amazing advice and support he has given

throughout. Thank you also to Harmonic Machine Inc. for giving

us the opportunity to work on this problem and present results of

this research.

The issue we address considers a situation where at least two

machines complete their cycles at almost the same time. An

operator may spend time changing over a machine with lower

priority while a machine with greater priority is left idle. In a job

shop, time is money, therefore minimizing the service down time

for high priority jobs becomes critical.

This problem is similar to a well studied problem known as the

Job Shop Problem. However, in this variant we are scheduling

when the machines will be changed over by an operator. A key

difference is that we have to account for the machines change-

over time based on some user-defined priorities.

Here we will discuss a solution formed around the Knapsack

problem. The Knapsack Problem is where given a knapsack with

capacity 𝐶 and a list of objects with known weights and values we

want to find the optimal total value in the knapsack while keeping

the total weight less than 𝐶. If the list of objects is infinite, the

Knapsack Problem is unsolvable in a reasonable amount of time.

If it is finite, however, it has many different solutions.

Three important parameters about the machines we will be

working with are.

1. Change-Over Time (𝐶𝑂𝑇) – The time it takes for an operator

to make an idle machine runnable again.

2. Time to Completion (𝑇𝑇𝐶) – The time remaining for the

machine to finish its run cycle.

3. Priority (𝑃) – The importance of the job the machine is

currently executing.

Computer Information Systems - University of the Fraser Valley

Holden Milne & Dr. Opeyemi Adesina (Supervisor)

Job shop operator scheduling software with change-over times

The algorithm works as follows:

1. Sort the list of machines by highest P, then by

lowest 𝑇𝑇𝐶 then by lowest 𝐶𝑂𝑇.

2. Select pivot machine 𝑢 with the highest 𝑃 and the

lowest 𝑇𝑇𝐶. Set 𝐶 to 𝑢. 𝑇𝑇𝐶. Initialize 𝐿 as an

empty list.

3. For each machine 𝑣 with lower priority than 𝑢, in the

same order as the input list:

I. if 𝑣. 𝑇𝑇𝐶 + 𝑣. 𝐶𝑂𝑇 < 𝐶 then append 𝑣 to 𝐿,

and subtract 𝑣. 𝑇𝑇𝐶 + 𝑣. 𝐶𝑂𝑇 from 𝐶.

4. Repeat from 2 on 𝐿 and also the elements not in 𝐿
separately until all machines have been scheduled,

placing the elements in the first list before 𝑢 and the

elements in the other list after 𝑢.

The idea behind this algorithm is that by first selecting machines

with the highest priority as our pivot machine, we can then place

machines before this pivot so long as they will all complete before

the pivot needs to be serviced. If they will not complete in time,

they will be placed afterwards. This will ensure that by the time

the high-priority pivot machine needs to be serviced, there will be

an operator available. Figure 2 gives a case example showing

the pivot machines and where the other machines in its list fall.

From these tests we can see that there is minimal loss to the

makespan. This loss occurs as there may be some machines with

lower 𝑃 and 𝑇𝑇𝐶 that get scheduled after another machine. From

Figure 2, we can see this with how 𝑀1 has a 𝑇𝑇𝐶 + 𝐶𝑂𝑇 greater

than the 𝑇𝑇𝐶 for 𝑀3. We do see a significant improvement on the

idle time, which in our circumstance is more important than

makespan. Lastly we also see a significant improvement in the

weighted priority score, which is what we were looking to achieve.

Prior to any optimization, the time complexity of this algorithm runs

at a worst case of 𝑂(𝑚2). Since the machine list will regularly need

to be updated and requires sorting, our sorting becomes a lower

bound of O(𝑚 log𝑚) with the quicksort algorithm.

To achieve this we will define the following constraints.

• The schedule can be broken into smaller lists of ascending

priority. Eg: (in Figure 2), 𝑀2, 𝑀5 , 𝑀1 form one of these lists.

• For each machine 𝑀𝑖 and another machine 𝑀𝑘 in each smaller

list, if 𝑘 < 𝑖 then 𝐶𝑂𝑇𝑘 + 𝑇𝑇𝐶𝑘 < 𝑇𝑇𝐶𝑖.
• For each machine 𝑀𝑖 in each smaller list the sum of 𝐶𝑂𝑇 + 𝑇𝑇𝐶

of all machines scheduled before 𝑀𝑖 must be less than 𝑇𝑇𝐶𝑖 .

In other words:

෍

𝑗=1

𝑖−1

(𝐶𝑂𝑇𝑗+𝑇𝑇𝐶𝑗) < 𝑇𝑇𝐶𝑖

These constraints will let us define our knapsack capacity and

weights. This will be done dynamically by taking a specific

machine’s 𝑇𝑇𝐶 as the capacity and the other machines 𝐶𝑂𝑇 +
𝑇𝑇𝐶 as the weights. We introduce a notation 𝑥. 𝑦 such that y is the

attribute of object 𝑥 (e.g., 𝑀.𝑇𝑇𝐶 implies the 𝑇𝑇𝐶 of machine 𝑀).

Figure 2: Example set of machines and the algorithm in process.

Figure 3: Baseline comparisons on 3 metrics.Figure 1: Partial psuedocode for main portion of the greedy-approach
knapsack solution. An additional loop is required with this function.

While there is an increase to makespan time, the large reduction

in idle time and increase in weighted priority indicate a strong

argument for the usage of this algorithm. One of the major draw

backs of this approach is that machines with low priority and high

change-over time may never be scheduled. For example if all

machines have a max 𝑇𝑇𝐶 of 10 (the full cycle time of machines

is no more than 10) and machine m has a 𝐶𝑂𝑇 of 11 machine m

will always be scheduled last. However, we have already

devised ways to handle these situations by allowing 𝑇𝑇𝐶 become

negative if the machine sits idle, and using activation functions

such as Rectified Linear Units to weight this negative descent.

The worst-case time complexity for the algorithm of O(𝑚2) could

cause problems. On one hand, in most circumstances, we will

have relatively few machines. However, many of the applications

of this algorithm are real-time and thus efficiency is important.

Further analysis may allow us to bring this down by a constant

factor, or possibly even to O(𝑚 log𝑚) if possible.

This algorithm will have applications in any situation where trying

to optimize some parameters subject to time constraints with time

delay. For example in a computer system where many programs

a vying for a resource, like a finite number of data lines, and

holding that resource for some amount of time, before processing

the data independently. We could then use this algorithm to

optimize the priority assigned to each program.

