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Problem Formulation

Our goal is to determine a change-over schedule where higher 

priority machines tend to be closer to the front of the schedule 

while ensuring that every machine will have a fair chance to get 

serviced. Thus we are trying to optimize priority subject to 𝑇𝑇𝐶
and 𝐶𝑂𝑇 constraints. To test this we will use a metric of weighted 

priority over the output list. This weights the priority of machines 

closer to the front of the list higher than those at the end.
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Where 0 < λ < 1 is the weighting parameter.

It is important to ensure that our makespan and idle times are not 

severely harmed in the process.  The makespan is the total time 

for all the machines to run and be serviced.  The idle time is the 

time a completed machine must wait before being serviced.  Our 

algorithm is tested against a first-come-first-serve baseline where 

machines are sorted by 𝑇𝑇𝐶.

Abstract

We present a solution to a variation of the Job Shop scheduling 

problem in which jobs (with each job having assigned priorities) 

are to be run by 𝑚 machines and serviced by 𝑛 operators. In a 

job shop, different machines run concurrently, which may result in 

multiple jobs being completed at the same time. It becomes a 

concern whenever jobs with lower priorities are serviced over 

jobs with higher priorities. Our goal is to develop a software to 

guide operators on jobs to be serviced at any given time. We 

have formulated several algorithms based on the knapsack and 

leader election problems to realize our goal each with O(𝑚2) run-

time complexity, where 𝑚 is the number of machines.  But we 

limit our discussion here to the np-hard knapsack problem.

Background
Algorithm

This algorithm was tested in a Python3 Jupyter-Notebook 

environment on randomly generated sets of 40 machines.  

Machines were generated as 3-tuples – (𝐶𝑂𝑇, 𝑇𝑇𝐶, 𝑃) using 

random values.  

From the randomly generated list of machines we constructed a 

baseline schedule that sorted all machines by 𝑇𝑇𝐶.  This gives us 

a good way to compare our algorithm to the first-come-first serve 

situation which is the basis for the problem.  We ran 500 tests per 

metric and used a λ = 0.9 for weighted priority.

Results Conclusions

Future Research

Our goal will be to explore other optimization approaches such as 

Lagrange Multipliers, and the aforementioned Leader Election 

problem approach.  Since the algorithm mentioned here is 

designed with only one operator and assumes that this will 

extend well to many operators, we may look at ways of improving 

this algorithm further if the number of operators is known.  We will 

also look into ways of improving the time-complexity of this 

algorithm, and applying other knapsack problem solutions.
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The issue we address considers a situation where at least two 

machines complete their cycles at almost the same time. An 

operator may spend time changing over a machine with lower 

priority while a machine with greater priority is left idle. In a job 

shop, time is money, therefore minimizing the service down time 

for high priority jobs becomes critical.

This problem is similar to a well studied problem known as the 

Job Shop Problem.  However, in this variant we are scheduling 

when the machines will be changed over by an operator.  A key 

difference is that we have to account for the machines change-

over time based on some user-defined priorities.

Here we will discuss a solution formed around the Knapsack 

problem.  The Knapsack Problem is where given a knapsack with 

capacity 𝐶 and a list of objects with known weights and values we 

want to find the optimal total value in the knapsack while keeping 

the total weight less than 𝐶.  If the list of objects is infinite, the 

Knapsack Problem is unsolvable in a reasonable amount of time.  

If it is finite, however, it has many different solutions.

Three important parameters about the machines we will be 

working with are.

1. Change-Over Time (𝐶𝑂𝑇) – The time it takes for an operator 

to make an idle machine runnable again.

2. Time to Completion (𝑇𝑇𝐶) – The time remaining for the 

machine to finish its run cycle.

3. Priority (𝑃) – The importance of the job the machine is 

currently executing.
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The algorithm works as follows:

1. Sort the list of machines by highest P, then by 

lowest 𝑇𝑇𝐶 then by lowest 𝐶𝑂𝑇.  

2. Select pivot machine 𝑢 with the highest 𝑃 and the 

lowest 𝑇𝑇𝐶.  Set 𝐶 to 𝑢. 𝑇𝑇𝐶.  Initialize 𝐿 as an 

empty list.

3. For each machine 𝑣 with lower priority than 𝑢, in the 

same order as the input list:

I. if 𝑣. 𝑇𝑇𝐶 + 𝑣. 𝐶𝑂𝑇 < 𝐶 then append 𝑣 to 𝐿, 

and subtract 𝑣. 𝑇𝑇𝐶 + 𝑣. 𝐶𝑂𝑇 from 𝐶.

4. Repeat from 2 on 𝐿 and also the elements not in 𝐿
separately until all machines have been scheduled, 

placing the elements in the first list before 𝑢 and the 

elements in the other list after 𝑢.

The idea behind this algorithm is that by first selecting machines 

with the highest priority as our pivot machine, we can then place 

machines before this pivot so long as they will all complete before 

the pivot needs to be serviced.  If they will not complete in time, 

they will be placed afterwards.  This will ensure that by the time 

the high-priority pivot machine needs to be serviced, there will be 

an operator available.  Figure 2 gives a case example showing 

the pivot machines and where the other machines in its list fall.

From these tests we can see that there is minimal loss to the 

makespan.  This loss occurs as there may be some machines with 

lower 𝑃 and 𝑇𝑇𝐶 that get scheduled after another machine.  From 

Figure 2, we can see this with how 𝑀1 has a 𝑇𝑇𝐶 + 𝐶𝑂𝑇 greater 

than the 𝑇𝑇𝐶 for 𝑀3.  We do see a significant improvement on the 

idle time, which in our circumstance is more important than 

makespan.  Lastly we also see a significant improvement in the 

weighted priority score, which is what we were looking to achieve.

Prior to any optimization, the time complexity of this algorithm runs 

at a worst case of 𝑂(𝑚2).  Since the machine list will regularly need 

to be updated and requires sorting, our sorting becomes a lower 

bound of O(𝑚 log𝑚) with the quicksort algorithm.  

To achieve this we will define the following constraints. 

• The schedule can be broken into smaller lists of ascending 

priority. Eg: (in Figure 2), 𝑀2, 𝑀5 , 𝑀1 form one of these lists.

• For each machine 𝑀𝑖 and another machine 𝑀𝑘 in each smaller 

list, if 𝑘 < 𝑖 then 𝐶𝑂𝑇𝑘 + 𝑇𝑇𝐶𝑘 < 𝑇𝑇𝐶𝑖.
• For each machine 𝑀𝑖 in each smaller list the sum of 𝐶𝑂𝑇 + 𝑇𝑇𝐶

of all machines scheduled before 𝑀𝑖 must be less than 𝑇𝑇𝐶𝑖 .  

In other words:
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(𝐶𝑂𝑇𝑗+𝑇𝑇𝐶𝑗) < 𝑇𝑇𝐶𝑖

These constraints will let us define our knapsack capacity and 

weights. This will be done dynamically by taking a specific 

machine’s 𝑇𝑇𝐶 as the capacity and the other machines 𝐶𝑂𝑇 +
𝑇𝑇𝐶 as the weights. We introduce a notation 𝑥. 𝑦 such that y is the 

attribute of object 𝑥 (e.g., 𝑀.𝑇𝑇𝐶 implies the 𝑇𝑇𝐶 of machine 𝑀).

Figure 2: Example set of machines and the algorithm in process.

Figure 3: Baseline comparisons on 3 metrics.Figure 1: Partial psuedocode for main portion of the greedy-approach 
knapsack solution.  An additional loop is required with this function.

While there is an increase to makespan time, the large reduction 

in idle time and increase in weighted priority indicate a strong 

argument for the usage of this algorithm.  One of the major draw 

backs of this approach is that machines with low priority and high 

change-over time may never be scheduled.  For example if all 

machines have a max 𝑇𝑇𝐶 of 10 (the full cycle time of machines 

is no more than 10) and machine m has a 𝐶𝑂𝑇 of 11 machine m 

will always be scheduled last.  However, we have already 

devised ways to handle these situations by allowing 𝑇𝑇𝐶 become 

negative if the machine sits idle, and using activation functions 

such as Rectified Linear Units to weight this negative descent. 

The worst-case time complexity for the algorithm of O(𝑚2) could 

cause problems. On one hand, in most circumstances, we will 

have relatively few machines. However, many of the applications 

of this algorithm are real-time and thus efficiency is important. 

Further analysis may allow us to bring this down by a constant 

factor, or possibly even to O(𝑚 log𝑚) if possible.

This algorithm will have applications in any situation where trying 

to optimize some parameters subject to time constraints with time 

delay. For example in a computer system where many programs 

a vying for a resource, like a finite number of data lines, and 

holding that resource for some amount of time, before processing 

the data independently.  We could then use this algorithm to 

optimize the priority assigned to each program.


