Job shop operator scheduling software with change-over times

Holden Milne & Dr. Opeyemi Adesina (Supervisor)

Computer Information Systems - University of the Fraser Valley

Abstract

We present a solution to a variation of the Job Shop scheduling
problem in which jobs (with each job having assigned priorities)
are to be run by m machines and serviced by n operators. In a
job shop, different machines run concurrently, which may result in
multiple jobs being completed at the same time. It becomes a
concern whenever jobs with lower priorities are serviced over
jobs with higher priorities. Our goal is to develop a software to
guide operators on jobs to be serviced at any given time. We
have formulated several algorithms based on the knapsack and
leader election problems to realize our goal each with 0(m?) run-
time complexity, where m is the number of machines. But we
limit our discussion here to the np-hard knapsack problem.

Background

The issue we address considers a situation where at least two
machines complete their cycles at almost the same time. An
operator may spend time changing over a machine with lower
priority while a machine with greater priority is left idle. In a job
shop, time Is money, therefore minimizing the service down time
for high priority jobs becomes critical.

This problem is similar to a well studied problem known as the
Job Shop Problem. However, in this variant we are scheduling
when the machines will be changed over by an operator. A key
difference Is that we have to account for the machines change-
over time based on some user-defined priorities.

Here we will discuss a solution formed around the Knapsack
problem. The Knapsack Problem is where given a knapsack with
capacity C and a list of objects with known weights and values we
want to find the optimal total value in the knapsack while keeping
the total weight less than C. If the list of objects is infinite, the
Knapsack Problem is unsolvable in a reasonable amount of time.
If it Is finite, however, it has many different solutions.

Three important parameters about the machines we will be
working with are.

1. Change-Over Time (COT) — The time it takes for an operator
to make an idle machine runnable again.

2. Time to Completion (TTC) — The time remaining for the
machine to finish its run cycle.

3. Priority (P) — The importance of the job the machine is
currently executing.

Problem Formulation

Our goal is to determine a change-over schedule where higher
priority machines tend to be closer to the front of the schedule
while ensuring that every machine will have a fair chance to get
serviced. Thus we are trying to optimize priority subjectto TTC
and COT constraints. To test this we will use a metric of weighted
priority over the output list. This weights the priority of machines
closer to the front of the list higher than those at the end.

m
WeightedPriority = z(Pi - AH)
i=1

Where 0 < A < 1 is the weighting parameter.

It is Important to ensure that our makespan and idle times are not
severely harmed in the process. The makespan is the total time
for all the machines to run and be serviced. The idle time is the
time a completed machine must wait before being serviced. Our
algorithm is tested against a first-come-first-serve baseline where
machines are sorted by TTC.

To achieve this we will define the following constraints.
 The schedule can be broken into smaller lists of ascending
oriority. Eg: (in Figure 2), M,, M< , M; form one of these lists.
* For each machine M; and another machine M, in each smaller
Ist, If k <ithen COT,, + TTC,, <TTC;.
* For each machine M; in each smaller list the sum of COT + TTC
of all machines scheduled before M; must be less than TTC; .
In other words:

i—1
(COT;+TTC;) < TTC;

j=1

These constraints will let us define our knapsack capacity and

weights. This will be done dynamically by taking a specific

machine’s TTC as the capacity and the other machines COT +

TTC as the weights. We introduce a notation x.y such that y Is the

attribute of object x (e.g., M.TTC implies the TTC of machine M).

Algorithm

The algorithm works as follows:

1. Sort the list of machines by highest P, then by
lowest TTC then by lowest COT.

2. Select pivot machine u with the highest P and the
lowest TTC. Set Ctou.TTC. Initialize L as an
empty list.

3. For each machine v with lower priority than u, in the
same order as the input list:

. ifv.TTC +v.COT < C then append v to L,
and subtract v. TTC + v.COT from C.

4. Repeat from 2 on L and also the elements not in L
separately until all machines have been scheduled,
placing the elements in the first list before u and the
elements in the other list after wu.

The idea behind this algorithm is that by first selecting machines
with the highest priority as our pivot machine, we can then place
machines before this pivot so long as they will all complete before
the pivot needs to be serviced. If they will not complete in time,
they will be placed afterwards. This will ensure that by the time
the high-priority pivot machine needs to be serviced, there will be
an operator available. Figure 2 gives a case example showing
the pivot machines and where the other machines in its list fall.

Sorted list

M; Ms

Ms My Ms Mg My

COT 3 1
TTC 8 2
Priority 5 1

2 3 1 4 2
3 0 3 12 3
3 2 4 D 3

Pivot

Scheduled After | Schedule

Algorithm 1.2 GreedyMachineList(m,M) — A greedy approach to selecting which elements should

come before machine m

Require: Currently selected machine m, List M of machines to choose from w/ priority less than m’s

if len(M) == 0 then
return [m]
else if len(M) == 1 then
/* If M has exactly one element compare to m and return appropriately */
if (Mo.COT + My TTC)< m. TTC then
M .append(m)
return M
else
return [m]
L=]
capacity = m. 1 TC
/* Fit machines into capacity */
for = in M do
if 2. 17T7TC+ «.COT < capacity then
L.append(x)
capacity— = . TTC + z.COT
OutList = | |
if L is not Empty then
nextPivot = machine with largest priority and smallest T7T'C' in L
remove nextPivot from L
Ouwut List = GreedyMachineList(next Pivot,SubList(nextPivot, L))
for [in OutList do
if [is in L then
L.remove(l)
for [in L do
append [to QutList
append m to QutList
return OQOutList

Figure 1: Partial psuedocode for main portion of the greedy-approach
knapsack solution. An additional Qoop is required with this function.

M,
Mg
Ms;
Ms
M;
M,
M,

Scheduled before
5% |
0:
7

My Mg, M3, M7 My| | M,y

M- i M. M,

M, H My, Ms M,

M M,] My, M, My, Mg

M,] Mo .M. My . Ms M7 M. M,

Figure 2: Example set of machines and the algorithm in process.

Results

This algorithm was tested in a Python3 Jupyter-Notebook
environment on randomly generated sets of 40 machines.
Machines were generated as 3-tuples — (COT,TTC, P) using
random values.

From the randomly generated list of machines we constructed a
baseline schedule that sorted all machines by TTC. This gives us
a good way to compare our algorithm to the first-come-first serve
situation which is the basis for the problem. We ran 500 tests per
metric and used a A = 0.9 for weighted priority.

Idle Time

Makespan - Baseline vs Algorithm

460 - Algorithm Average
—— Baseline Average
440 P, Algorithm Makespan Times
* @ :' 0n o Baseline Makespan Times
g s®» = . e o) @ " &
£ 420) @0 009 O . Gy B o W® @ e 0
(o oo o ! -4 8 @ » Q. * 3{) * #'14‘; 2@ ; ® e ~
= ®Fo@0o® § g ! &, © . fI:-"%.\f' -® 1"!} 2® o 8
S 28 8% .. 28 o 5o PTAP%Ee S
§900] SR S e d U L W, T Foe
- NP o @3 goo® L o TolBps® “ ®© o @ #‘."
=] °8e 7.8 & . e ° ° @ %[_‘ 8 2000 goo
380 ce B N e @ o8 _ Ca
360 - Q 8 0
340 a | | | | | |
0 100 200 300 400 500
Test Number
ldle Time - Baseline vs Algorithm
9000 - Algori.thm Average
—— Baseline Average
8500 4 Algorithm IFiIe Times o
Base Idle Times ' g
q 90 o Y@F
= T o - . k
8000 - o . ' Lewe S
& @ Q =] . f g 4 ¢I ;,"‘_-"-“I,;‘}%__
st Chie Ps §° 5 o go? ST
?500 i ;f \‘ﬂ Al _TFI C 6] .,..._.;?4 e -';-' ':'5‘ a H;
;) Cﬂ‘: iyl.j‘fu“ :&t) —{' Y .ll-'i.i ;‘Fluz =
7000 - o #oF do ¥ P |
L= . ‘@
6500 - ;
6000 i | | | | | |
0 100 200 300 400 500
Test Number
Weighted Priority - Baseline vs Algorithm
40 -
35
@ Y) "\'—'_.f, v
a 30 9.0 20" Qﬂh & l’al ' & ® » 900 o ® B
a0 & 'Y Qo0S e W oo ® o
3 ° SO0 Fe Y G e O Lian 0
~ 'v'ﬁf ' '43“‘ = 'DH‘ = 0—6 .’ — — _, -
2 TEE & 8 5 " ®oe S "IDi ‘ f,n:f) 4
= 2 08 TS 0g® us 30 W, 0 0% 3 %0
ol . Algorithm Average
— Baseline Average
20 - Algorithm Weighted Priority
Baseline Weighted Priority
0 100 200 300 400 500

Test Number

Figure 3: Baseline comparisons on 3 metrics.

From these tests we can see that there is minimal loss to the
makespan. This loss occurs as there may be some machines with
lower P and TTC that get scheduled after another machine. From
Figure 2, we can see this with how M, has a TTC + COT greater
than the TTC for M;. We do see a significant improvement on the
idle time, which in our circumstance Is more important than
makespan. Lastly we also see a significant improvement in the
weighted priority score, which is what we were looking to achieve.

Prior to any optimization, the time complexity of this algorithm runs
at a worst case of 0(m?). Since the machine list will regularly need
to be updated and requires sorting, our sorting becomes a lower
bound of O(m logm) with the quicksort algorithm.

Conclusions

While there Is an increase to makespan time, the large reduction
In idle time and increase in weighted priority indicate a strong
argument for the usage of this algorithm. One of the major draw
backs of this approach is that machines with low priority and high
change-over time may never be scheduled. For example if all
machines have a max TTC of 10 (the full cycle time of machines
IS no more than 10) and machine m has a COT of 11 machine m
will always be scheduled last. However, we have already
devised ways to handle these situations by allowing TTC become
negative If the machine sits idle, and using activation functions
such as Rectified Linear Units to weight this negative descent.

The worst-case time complexity for the algorithm of O(m?) could
cause problems. On one hand, in most circumstances, we will
have relatively few machines. However, many of the applications
of this algorithm are real-time and thus efficiency is important.
Further analysis may allow us to bring this down by a constant
factor, or possibly even to O(m logm) if possible.

This algorithm will have applications in any situation where trying
to optimize some parameters subject to time constraints with time
delay. For example in a computer system where many programs
a vying for a resource, like a finite number of data lines, and
holding that resource for some amount of time, before processing
the data independently. We could then use this algorithm to
optimize the priority assigned to each program.

Future Research

Our goal will be to explore other optimization approaches such as
Lagrange Multipliers, and the aforementioned Leader Election
problem approach. Since the algorithm mentioned here Is
designed with only one operator and assumes that this will
extend well to many operators, we may look at ways of improving
this algorithm further if the number of operators is known. We will
also look into ways of improving the time-complexity of this
algorithm, and applying other knapsack problem solutions.

Acknowledgements

Thank you to Dr. Adesina for the opportunity to work on this
project, and the amazing advice and support he has given
throughout. Thank you also to Harmonic Machine Inc. for giving
us the opportunity to work on this problem and present results of
this research.

OF THE T'[D

UNIVERSITY = '

